Package: bipl5 (via r-universe)

October 15, 2024

Title Construct Reactive Calibrated Axes Biplots

Version 1.0.2

Description A modern view on the principal component analysis biplot with calibrated axes. Create principal component analysis biplots rendered in HTML with significant reactivity embedded within the plot. Furthermore, the traditional biplot view is enhanced by translated axes with inter-class kernel densities superimposed. For more information on biplots, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0).

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE, roclets = c (``namespace", ``rd", ``srr::srr_stats_roclet"))

RoxygenNote 7.2.3

Imports cluster, crayon (>= 1.5.2), htmlwidgets (>= 1.6.2), knitr (>= 1.43), methods, plotly (>= 4.10.2)

Depends R (>= 2.10)

URL https://cran.r-project.org/web/packages/bipl5/index.html

BugReports https://github.com/RuanBuys/bipl5/issues

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Repository https://ruanbuys.r-universe.dev

RemoteUrl https://github.com/ruanbuys/bipl5

RemoteRef HEAD

RemoteSha e724614f1cd9057123da9507374458251f0d4bae

Contents

bipl5	2
colorpal	3
FMbiplot	3
PCAbiplot	4
plot.bipl5	6
predict.bip15	7
print.bipl5	7
Symbol_List	8
TDAbiplot	8
	12

Index

bipl5

bipl5: Constructing Reactive Calibrated Axes Biplots

Description

A modern view on PCA biplot with calibrated axes. Create PCA biplots rendered in HTML with significant reactivity embedded on the plot. Furthermore, the traditional biplot view is enhanced by translated axes with interclass kernel densities superimposed.

Details

Package:	bipl5
Type:	Package
Version:	0.0.0.9400
Date:	16-10-2023
License:	MIT
LazyLoad:	TRUE

Author(s)

- Ruan Buys (Maintainer)
- Carel van der Merwe

Core Functions

- PCAbiplot
- TDAbiplot
- FMbiplot
- predict.bip15
- print.bip15

colorpal

Code Availability

The newest version of the package can be obtained on GitHub: https://github.com/RuanBuys/bip15

colorpal

bipl5 default color scales

Description

bipl5 default color scales

Usage

colorpal(number = 16)

Arguments

number Integer - number of distinct colors to return. Ranges from 1 to 16.

Value

Character vector of default colors in bip15. There are sixteen unique colors defined.

Examples

colorpal(number=7)

FMbiplot

Determine various measures of fit for the PCA biplot

Description

Print various measures of fit of the biplot display to the console

Usage

```
FMbiplot(x)
```

Arguments

x An object of class bip15

Value

A list returned invisibly containing the following fit measures:

- Cumulative Predictivity
- Marginal Predictivity for the first three principal components
- Marginal Adequacy for the first three principal components
- Overall quality of display

Examples

```
x<-PCAbiplot(iris[,-5])
FMbiplot(x)</pre>
```

PCAbiplot

Construct a rank-2 PCA biplot

Description

Rank-2 PCA biplots are constructed based on a combination of the first three principal components.

Usage

```
PCAbiplot(
    x,
    group = NULL,
    scale = TRUE,
    basis = 1:2,
    symbol = "circle",
    color = NULL,
    build_plot = TRUE
)
```

Arguments

x	A numeric matrix or data frame of size n x p
group	Vector of size n representing the class of each observation in x
scale	Boolean: indicating whether the data matrix should be standardized before SVD is performed. Similar to the cor argument in princomp
basis	A vector specifying which eigenvectors serve as basis for the plot. Currently only a biplot of rank 2 is supported.
symbol	Plotting symbol to be used per class group
color	Colors to be utilized per class group
build_plot	Boolean, indicating whether the biplot should be drawn or not. Mostly used in internal function calls serve as basis for the biplot. Currently only a biplot of rank 2 is supported.

PCAbiplot

Details

The method performs Principal Component Analysis (PCA) on the input data and constructs both a traditional biplot using vector representation and with calibrated axes. The data is clustered together on the display by the group parameter. The scale parameter determines if SVD is performed on the covariance matrix or correlation of x. It is highly recommended to set scale=TRUE as the rendered display is sensitive to the scaling in x.

By default three sets of principal components are used for the scaffolding axes, namely: 1 and 2, 1 and 3, and 2 and 3. The function constructs these biplots in the plot_ly graphing library with reactivity embedded on the display. The following features are available on the display:

- A dropdown menu to change the principal components used to construct the display. Currently
 only the first three pairwise are supported.
- A button to give fit statistics of the biplot. Once clicked, a table is added to give the adequacy and predictivity of each axis for the display.
- A button that inserts a graph depicting the cumulative predictivity of each axis against the dimension of the biplot. See FMbiplot for the coordinates.
- A button that changes the display from vector representation of the variables, to calibrated axes in their original scale. The vector representation includes a unit circle around the origin.
- Prediction lines are inserted onto the display if an observation is clicked. The prediction lines can be removed by clicking on the legend entry.

Value

A named list of class bip15 with the following attributes

х	A data frame which is the original input data
Z	A matrix of n x 2 representing the coordinates of each observation on the biplot
rank	The rank of the approximated data
scale	Whether the data is standardized prior to performing dimension reduction
group	The grouping vector of the data
mu	The vector of column means of the input data
stddev	Vector of column standard deviations if the scale parameter is set to TRUE.
PCA	The singular value decomposition of the covariance/correlation matrix, see ${\tt svd}$
bipl	The plotly graph displaying the biplot, see plot_ly
Adequacy	The adequacy of each axis displayed for each set of principal components
Predictivity	The predictivity of each axis displayed for each set of principal components

See Also

print.bipl5 to display the biplot graph and further see TDAbiplot to draw a biplot with calibrated density axes. Fit measures can be obtained by FMbiplot

Examples

```
## Consruct a biplot with
x<-PCAbiplot(iris[,1:4],group=iris[,5])
#alternatively
print(x)
## Construct a biplot that preserves the correlation structure among the
## variables
y<-PCAbiplot(iris[,-5],group=iris[,5],scale=TRUE)</pre>
```

plot.bip15 Plot an object of class bip15

Description

Plot an object of class bip15

Usage

S3 method for class 'bipl5'
plot(x, y = NULL, ...)

Arguments

х	An object of class bip15
У	Unsupported
	Unsupported

Value

A plot_ly graph containing the biplot

Examples

```
x<-PCAbiplot(iris[,-5])
plot(x)</pre>
```

6

predict.bip15

Description

Extract the fitted values of the biplot display

Usage

```
## S3 method for class 'bipl5'
predict(object, ..., kable.args = NULL)
```

Arguments

object	An object of class bip15 from which predicted values are to be obtained
	Not used
kable.args	Additional arguments to be passes to the kable function,

Value

The function invisibly returns the predicted values of the biplot display, and outputs the predicted values via the kable function

Examples

kable.args<-list()
kable.args\$format<-"pipe"
x<-PCAbiplot(iris[,-5])
predict(x,kable.args)</pre>

print.bipl5

Default print method for an object of class bip15

Description

Default print method for an object of class bip15

Usage

S3 method for class 'bipl5'
print(x, ..., plot = TRUE)

Arguments

х	Object of class bip15
	Additional parameters
plot	Boolean. Whether or not to display the plot

Value

The object is returned invisibly

Examples

```
x<-PCAbiplot(iris[,1:4],group=iris[,5])
print.bipl5(x)</pre>
```

Symbol_List Retrieve all valid plotting symbols for the plotly library

Description

Retrieve all valid plotting symbols for the plotly library

Usage

```
Symbol_List()
```

Value

A vector of all the valid plotting symbols used in the plot_ly library.

Examples

Symbol_List()

TDAbiplot

Construct PCA biplots with translated calibrated density axes

Description

Construct various rank-2 PCA biplots with translated axes based on a combination of the first three principal components.

Usage

```
TDAbiplot(
    x,
    dist = NULL,
    inflate = 1,
    alpha = 0.95,
    alpha_Elip = NULL,
    swop = FALSE,
    density.args = NULL,
    color = NULL,
```

TDAbiplot

```
symbol = "circle"
)
## S3 method for class 'bipl5'
TDAbiplot(
    x,
    dist = NULL,
    inflate = 1,
    alpha = 0.95,
    alpha_Elip = NULL,
    swop = FALSE,
    density.args = NULL,
    color = NULL,
    symbol = "circle"
)
```

Arguments

х	An object of class bip15. See PCAbiplot in this regard.
dist	Minimum distance between each axis. Default is roughly 12.5% of the plot diameter
inflate	Density inflation factor
alpha	Argument passes to alpha_Elip
alpha_Elip	A function taking two arguments, Z and alpha. The output of the function should be a two-column matrix of coordinates which will be used to construct an alpha- ellipse. See details below.
swop	Swop the direction which to which each axis is translated
density.args	Arguments to be passed to the density function
color	Colors to be utilized per class group
symbol	Plotting symbol to be used per class group

Details

This function produces a PCA biplot with translated calibrated axes. The function constructs this biplot in the plot_ly graphing library with reactivity embedded on the display. The following features are available on the display:

- A dropdown menu to change the principal components used to construct the display. Currently only the first three pairwise are supported.
- A button to give fit statistics of the biplot. Once clicked, a table is added to give the adequacy and predictivity of each axis for the display.
- A button that inserts a graph depicting the cumulative predictivity of each axis against the dimension of the biplot.
- Prediction lines are inserted onto the display if an observation is clicked. The prediction lines can be removed by clicking on the legend entry.

The alpha_Elip argument is used to subset the biplot plotting coordinates (Z) to remove the effect of outliers in the data. A common suggestion is to use an alphabag or on Convex hull peeling algorithm to strip away extreme points. The alpha-ellipse will be constructed around this data, and will impact the lengths of the calibrated axes.

Value

A named list of class bip15, see PCAbiplot, with the following attributes:

х	A data frame which is the original input data
Z	A matrix of n x 2 representing the coordinates of each observation on the biplot
rank	The rank of the approximated data
scale	Whether the data is standardized prior to performing dimension reduction
group	The grouping vector of the data
mu	The vector of column means of the input data
stddev	Vector of column standard deviations if the scale parameter is set to TRUE.
PCA	The singular value decomposition of the covariance/correlation matrix, see ${\tt svd}$
plot	The plotly graph displaying the biplot, see plot_ly
Adequacy	The adequacy of each axis displayed for each set of principal components
Predictivity	The predictivity of each axis displayed for each set of principal components

See Also

PCAbiplot FMbiplot

Examples

```
## Simple illustration of a calibrated density axis biplot
x<-PCAbiplot(iris[,-5],group=iris[,5])</pre>
TDAbiplot(x,dist=1,inflate=1)
## Change the plotting characters of class-groups:
y<- x |> TDAbiplot(dist=1,inflate=1,symbol=c("circle","diamond","square"))
## Custom kernel densities can be drawn on the axes:
density.args<-list()</pre>
density.args$kernel <- "optcosine"</pre>
density.args$bw <- "sj"</pre>
y<- x |> TDAbiplot(dist=1,inflate=1,density.args=density.args)
## To lessen the effects of outliers, a smaller alpha-ellipse can be
## used to determine axis lengths. Define a function that strips away
## outliers, for example a convex hull peeling algorithm:
HullPeeling <- function(x,alpha) {</pre>
  n < -nrow(x)
  propinside<-1
```

10

TDAbiplot

```
target<-1-alpha
x2<-x
while (propinside>target) {
    hull<-grDevices::chull(x2)
    x2old<-x2
    x2<-x2[-hull,]
    propinside<-nrow(x2)/n
    }
    return(x2[grDevices::chull(x2),])
}
y<- x |> TDAbiplot(dist=1,inflate=1, alpha_Elip=HullPeeling, alpha=0.4)
```

Index

bipl5, 2
colorpal, 3
FMbiplot, 2, 3, 5, 10
kable, 7
PCAbiplot, 2, 4, 9, 10
plot.bipl5, 6
plot_ly, 5, 6, 8–10
predict.bipl5, 2, 7
princomp, 4
print.bipl5, 2, 5, 7
svd, 5, 10
Symbol_List, 8

TDAbiplot, 2, 5, 8